
3 Kernel Regression.
(*) High-dimfeature spaces
(#) Popular Kernels egX= [X, x2]

*

· Higherdimensionalfeaturespacesextend regressions.
(x)=[iXXX , X, XI]

de=WiX

d6X= WsX+Wax WiX+ Wo

lot x= /X ... xnT* RM
↑N Consider

. d(x)=X, where(X) < R
I (P>M)

=> "Training data": Xi .di; i= 1, ....N
N

>"Findw":mind +X (Rodge)·
mid-wDefinedddNT

· Regression is a weightedsumof "Kernels".
= w=E (standa

((x) = q(x = q(x)N
SinceC

we have dex=GE
dij = P(x)q(x)
& [P]j =P(x)P(x,)3 define Kernel : (v)=(a)p().

->lot=( .
- ·x]

*

thend)=P=xi)
= (EXI)'d (easier computation) Xi(x)WeghdSu



· Kernel methods find &(X)thout computing P(X)
We have d(x)=xi) whereI

= (E+XI)d

(7j = P(xi)(xx)=k(xix).
=>I can be computedefficientlyD
eg. I being"Monomials ofdegree q : P(X)-X,

5
, x0x2 , ...x
(powerdegreesumtog).

then(v)=nnerpod. powerraise .

O(M).

=> p =I terms. (whenMo
① SupposeS M

= 10, g=5- prev Computing : O(p) vs OCN)

M= 100, g5 = P-108 Memory : O(ND) vs O(N).

· Popular choices of Kemels (dependon Similarity ofUV) X2 k(X .x)

Note that Wi= KublvII
:
CosO X2 = ⑧

(i) Monomial of degree g:u)= (NDE Y
Gi Polynomials up to degree g: R() =(U+ 18

.

* Gis Gaussiun/Radial Kemel : RED=exp)-II
how closedarei

*Not requiredexplicit form of $(x).
* Anintepolynomialorders => desiredchoiceof Kernel
*Smoothness : Controlledby sinceitgeneralizes regression

withhighdim spaces. (semiparamoti).



· Kenel Regression Considerations.
d=d=Xx (Kurnel)
() Store & compute : W(pX) vs. (NX1)
( Binaryclassifier

: sign(d). (movecom
() WAM:AvoidOverfghwhhigh-dfeatureas
=> Choose . 8 parameter.
=> with CV



B Kernel-based SUM.
() linear max margin classifier.
# Kemel versionofHingeLoss W/Ridge Regression.

· SUM defines "max-margin"classifier.

just. Where W=Sb]depends only on Support Vectors=>
Recall : Kernel regression . ↑

dex= F
l pix=* ((x)=xj
-de=xx

Zu

So
,
W=x - all xj = 0 except for theprectors

· Use Kamels for "nonlinear"decision boundaries.

=> high-dimfeature space : * -> ↑(*)

eg P(x)= (x, X2 ... xXy . -· Xm+ Xon 17.
=>&(x)= sign(ix) w)

Then
, "hinge loss with Ridge" minD-dip)+Mwlk

Claim . w= (difference : *- P(x))



· "Kernel trick" replaces &Exp(x) withK(ix)
FromW=xj .
=> thngeloss/Ridge :minD-dip+M

=>min[dip(Xxx)
=minXxx

K(xi,x,)

=> SM :mikix
① Ittums out SVM has sparse (in linearcase + high-dime)
· Decision boundary : Hx= 0 =P

=· Boundary Chingeloss) depends onlyonvectors.
· Kemes. (R(u) measures similarityofrestorsr
ef Gaussian kames : KIV=expfwriy

a
-> Solve via Gradient Descent.


